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Abstract—In recent years, machine learning for visual object
recognition has been applied to various domains, e.g., autonomous
vehicle, heath diagnose, and home automation. However, the
recognition procedures still consume a lot of processing energy
and incur a high cost of data movement for memory accesses. In
this paper, we propose a novel hardware accelerator design, called
ORCHARD, which processes the object recognition tasks inside
memory. The proposed design accelerates both the image feature
extraction and boosting-based learning algorithm, which are key
subtasks of the state-of-the-art image recognition approaches. We
optimize the recognition procedures by leveraging approximate
computing and emerging non-volatile memory (NVM) technology.
The NVM-based in-memory processing allows the proposed
design to mitigate the CMOS-based computation overhead, highly
improving the system efficiency. In our evaluation conducted
on circuit- and device-level simulations, we show that ORCHARD
successfully performs practical image recognition tasks, including
text, face, pedestrian, and vehicle recognition with 0.3% of
accuracy loss made by computation approximation. In addition,
our design significantly improves the performance and energy
efficiency by up to 376x and 1896x, respectively, compared to the
existing processor-based implementation.

Keywords—Adaboost, object recognition, processing in-memory,
non-volatile memory

I. INTRODUCTION

An important task in the emerging Internet of Things (IoT)
domain is visual object recognition which analyzes images
and videos to extract useful information about the surrounding
environment [1]. For example, autonomous vehicles need to
recognize various objects such as cars, pedestrian, and traffic
signals, from real-time videos taken by cameras. Since most
object recognition procedures are both data and compute inten-
sive, general-purpose processors often do not provide enough
power efficiency and performance for real-time response. An
alternative solution is to execute the object recognition pro-
cedure on specialized hardware accelerators such as FPGAs.
These accelerator designs rely on the CMOS-based processing
logic which consumes a lot of power, and the performance
is limited by the memory bandwidth. For example, a recent
FPGA-based design provides only 7.5x speedup as compared
to the processor-based implementation [2]. Considering the
significant increase in visual data, e.g., more than 250 billion
photos uploaded to Facebook every day [3], we need more
efficient strategies to accelerate these tasks.

In this paper, we propose a novel accelerator design, called
ORCHARD (Object Recognition and Classification Hardware
Accelerator on Resistive Devices), which performs the ob-
ject recognition computation inside memory. The proposed
accelerator has computation-enabled memory blocks which
store the image data and the machine learning models. We
utilize the memristor NVM, which has zero leakage power
consumption and fast read operations [4], to enable high power
and performance efficiency of ORCHARD. The proposed design
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processes both the feature extraction procedure and image
classification tasks, which are key subprocedures of the object
recognition. We support two popular feature extraction algo-
rithms, HOG (Histogram of Oriented Gradient) [5] and Haar-
like feature extraction [6]. The feature extraction computations
are modeled to memory operations and further optimized
based on the idea of approximate computing. The image
classification task exploits boosting algorithm, which is one
of the best image recognition algorithms nowadays [7, 8]. The
boosting algorithm belongs to a meta algorithm of ensemble
learning methods, which utilize many simple, complementary
learning models, called base learners. Since each base learner
is independent of each other, we can highly parallelize them
by modeling each learner in a memristor block.

In our evaluation, we show that the proposed ORCHARD
design successfully performs four practical image recognition
tasks: text, face, pedestrian, and vehicle recognition. Our
experimental results also show that the proposed design signif-
icantly reduces the computation overhead. For example, with
a minimal accuracy loss of 0.3% by the approximation, we
increase performance and energy efficiency by up to 376x and
2896x, respectively, compared to the state-of-the-art processor-
based computation.

II. RELATED WORK

Visual object recognition acceleration: To provide effi-
cient mechanisms for the object recognition, previous work
accelerates them by creating application-specific hardware.
Much research focus on the acceleration of the boosting-
based image classification procedure which most recent al-
gorithms exploit [7, 8]. Several FPGA-based implementations
have been proposed to enable the object detection in real-
time videos, e.g., face [9], human [10, 11], cars [12], vision-
based cancer diagnosis [13] and generic objects [14]. For
example, [15] proposed a FPGA accelerator which perform
Haar-like feature extraction and Adaboost algorithm for the
image classification. An ASIC-based implementation has been
also recently proposed to further improve performance [2].
However, the computation tasks of these designs are processed
on the traditional CMOS-based, application-specific processing
cores and logic, and thus still have high overhead. In addition,
they perform precise computation of the recognition tasks,
missing many opportunities to further accelerate. In contrast,
our proposed ORCHARD processes the tasks inside memory
while further leveraging approximate computing.

Another popular algorithm actively investigated nowa-
days for object recognition is deep neural networks. Both
FPGA [16] and ASIC-based designs [17] have been proposed.
Even though these neural network-based approaches show su-
perior quality in the recognition tasks, there are still significant
energy and performance issues due to the high computation
complexity and large memory footprints of models. In this
work, we exploit AdaBoost as an alternative solution, which
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has been widely used in computer vision field. This learn-
ing method is often relatively light-weight, and shows better
accuracy than DNN in some cases of the image recognition,
e.g., face detection [7]. In addition, this requires less effort
to tune modeling parameters and the trained models are easy
to interpret, making it a viable solution for diverse object
recognition tasks without losing generality.

Memory-Based Computing: Near-data computing can be an
effective solution to accelerate computation by reducing the
overhead of data movements between hardware blocks [18].
Prior research investigated Processing In Memory (PIM) as
a strategy for the near-data computing. For example, the
design proposed in [18] exploits a 3D-stacked structure which
implements a set of instructions, e.g., floating point add and
Euclidean distance, on the top of DRAM blocks. Other work
showed that more sophisticated functionality can be also
implemented, e.g., MapReduce based on 3D stacking [19]
and nearest neighbor search using computational logic next
to DRAM [20]. With advances of emerging NVM technology
such as phase-change RAM (PCRAM), spin-transfer torque
RAM (STT-RAM), and memristor devices, several research
focused on NVM-based PIM techniques since the new memory
devices show superior characteristics such as high density, low-
power consumption, and scalability [4, 21]. For example, work
in [22] proposed AC-DIMM which supports basic bit-serial
instructions and search operations on STT-RAM. The authors
in [23] presented how to support bit-wise operations in mem-
ory using analog characteristic of NVM devices. The authors
in [24] modified a NVM-based content addressable memory
architecture to perform in-memory brain-inspired computing
by supporting nearest Hamming distance search operation. The
NVM memory was also used to accelerate computation on
general-purpose processors by storing precomputed results and
exploiting them to reduce redundant computation [25, 26].

As compared to PIM techniques which focus on assistance
of PIM-based operations for general-purpose processors, we
devise a memory-based accelerator which covers a whole body
of the image recognition task without using general-purpose
processors. To the best of our knowledge, this is the first
work which accelerates the image recognition procedure fully
utilizing in-memory computing.

III. DESIGN OF ORCHARD

A. Overview of ORCHARD

Figure 1 shows an architectural overview of the proposed
ORCHARD design. In an offline stage, we interpret trained
models for the object recognition models, and write the model
into the memory blocks of the feature extractor and boost
learners. Once the model is written, ORCHARD can perform
in-memory image recognition procedure at runtime for a given
image, e.g., an image including a human face. The feature
extractor consists of two types of crossbar memory modules,
approximate HOG feature extractor and Haar-like feature ex-
tractor module, which are selectively used according to the
model description, and each of which stores a set of precom-
puted results for each extraction. In each module, ORCHARD
performs the feature extraction tasks through memory access
operations by converting pixel information of the given image
to memory addresses. The extracted features are written to the
feature buffer of the boost learner for the classification task.

The boost learner performs the image classification task,
using multiple decision tree memory blocks, in short, DT-
MEM, which model the functionality of base learners of boost-
ing algorithms. The DT-MEM block is designed as associative
memory (AM), which supports in-memory search operation

Fig. 1: An architectural overview of ORCHARD

using content addressable memory (CAM). We map each
decision step of the base learner into the search operation of
the DT-MEM blocks. Through the in-memory classification
with the extracted features, each DT-MEM produces a list of
probability values for the recognized objects as the outputs,
and they are accumulated using a tree-based adder to create
the final recognition result. For example, if the recognition task
is to detect digital numbers among 10 classes, i.e., from 0 to 9,
the corresponding 10 probability values are computed. For the
two class problems, the final result includes two probabilities
values, i.e., for the binary decision of ‘true’ and ‘false’ cases.
Then, the identified image class which has a high probability
is determined as the one including the target object.

Note that most of the subblocks in the two modules are
designed using resistive memory. Since the major computation
steps of the recognition procedure are implemented as memory
operations, the ORCHARD can accomplish the recognition tasks
by invoking the in-memory computing functionalities, while
only light-weight, high-level algorithm controls happen in
the microcontroller. This significantly reduces the power and
performance overhead due to CMOS-based logic. In the next
section, we discuss how ORCHARD processes the recognition
tasks in each memory block.

B. Memory-Based Feature Extraction

In modern image recognition algorithms, a feature extrac-
tion procedure precedes the classification to identify useful in-
formation from raw image pixels, and this improves the quality
of the recognition. The proposed ORCHARD implements two
most popular feature extraction procedures, HOG and Haar-
like features, in the memory blocks.

1) Approximate HOG Feature Extraction: Before explain-
ing the proposed PIM technique for the HOG extraction, we
describe the basics of the original HOG extraction algorithm.
The underlying intuition is that the distribution of pixel gradi-
ents in a small region can describe shape and appearance of
target objects. Figure 2 illustrates the HOG feature extraction
procedure with an example. The procedure first divides the
original image into multiple regions. The 32x32 image in
the figure is divided into four regions. For each region, it
computes the gradient values of all pixels by considering its
adjacent pixels, called cell. The gradient can be represented by
a vector which has an orientation (direction) and magnitude.
The magnitude values of all cells are then accumulated into
evenly-spread histogram bins. In this example, if a vector has
a magnitude of m with an orientation of 230°, considering 8
bins from 0° to 315°, say vi (0 ≤ i < 8), m is accumulated
to v5. This procedure computes the histogram bins for other
regions as well, producing R · B features where R is the
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Fig. 2: An illustration of HOG feature extraction

number of regions and B is the number of bins. If the image
includes multiple color channels, we may consider either the
grayscale image or each color channel separately. In this
procedure, the main bottleneck is the vector computation, as
it typically involves many arithmetic operations, e.g., gradient
calculation and trigonometrical functions. In our ORCHARD
design, we optimize the vector computation by modeling and
approximating it as a single memory access.

Let f be a function to be modeled, where it takes an
operand in a set X and produces an output in a set Y, i.e.,
f : X → Y. If the input set X is finite, the output set Y

is finite. Thus, we may imagine a memory which stores all
the precomputed results of Y while the memory address is
given by indexing each element of X. In our case that the
gradient vector computation is the function f , 2569 memory
rows could represent the function, since there are 256 values
for a pixel of an image color channel and the cell includes 9
pixels. However, this memory size for all pixel combinations
is prohibitively huge in practice.

We optimize this memory size by storing only approximate
and representative values. For example, if the goal of the
image recognition task is to detect a hand-written alphabet,
we would approximate the input pixels using two values, e.g.,
for black and white, respectively. In that case, the number of
required memory rows is only 29(= 512). To verify this idea
on practical images, we conducted an analysis for two popular
image datasets, MNIST for text recognition [27] and Caltech
10000 web faces (WebFaces) [28]. Figure 3 summarizes the
pixel distribution as a probability density function (PDF) for
each dataset. As shown in the results, many similar pixels
exist for the images. For example, more than 87% of pixels
of the MNIST images are either 0 and 255. For the WebFaces
dataset, many pixels have similar values in the middle range.
This similarity allows to approximately model the complex
function computation using a reasonably small memory size.

Figure 4 shows the memory structure which implements
PIM-based approximate HOG feature extraction procedure.
For a given 3x3 cell image, the address decoder quantizes each
pixel p into a value q of a few bits, where q = �p/(256/Q)�
and Q is the quantization level. In this example, when Q = 4,
the 256 pixel values are quantized to 4 values, 00, 01, 10, and
11. The quantized value are concatenated to form a memory
address which indicates a row of the crossbar memory block
called recipe memory. Each row of the recipe memory includes
two pieces of information, one for the bin index of the vector
direction, di, and the other for the magnitude, mi. They are
precomputed using the median values of each quantized range.
Intuitively, the precomputed results keep similarity to the
one precisely computed for original cell pixels. The selected
row is accessed by a small CMOS-based accumulator logic
block which computes the histogram of the region. This logic
accumulates the magnitude mi to a histogram bin selected by

Fig. 3: Pixel distribution of two benchmarks

Fig. 4: Approximate in-memory HOG extraction

the bin index di, i.e., vdi . The microcontroller of ORCHARD
applies each cell of the image to this memory block in a
pipelined manner. Then the oriented histograms are computed
into the feature buffer.

Note that all the memory rows of Q9 for the 3x3 cell can be
completely precomputed offline regardless of datasets. We de-
sign the recipe memory with memristor devices which exhibit
low power and fast read access times that are comparable to
SRAM. In Section III-B3, we discuss how to further optimize
the crossbar memory based on the access characteristics.

2) In-Memory Haar-like Feature Extraction: ORCHARD
also supports Haar-like feature extraction procedure. Figure 5
describes the original procedure and its memory-based imple-
mentation. This figure shows two types of Haar-like features
denoted by the red boxes which are divided by black and
white stripes. For example, the feature consists of two black
stripes and one white stripe can capture the property that
the color of eyes are different from the facial color. For one
image, multiple features are extracted by computing a weighted
difference between the pixel sum of the black stripes and that
of the white stripes, where the weights for each pixel sum are
used for compensating the differences in the stripe size. Since
computing a sum of pixels in a stripe directly from the original
pixels is cost-ineffective, the state-of-art algorithm utilizes an
integral image [6]. The integral image has the same size to the
original images, and can be calculated in O(n) time where n is
the number of pixels. Let assume that each pixel of the original
image is p(x,y). Each value of the integral image s(x,y) is
computed by s(x,y) = p(x,y)+s(x−1,y)+s(x,y−1)+s(x−1,y−1)
where s0,0 is assumed to be zero. Then, the element of the
integral image s(x,y) represents the sum of all pixels of a
rectangle whose top-left coordinate is (1, 1) and bottom-left
coordinate is (x, y). Based on the integral image, the pixel sum
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Fig. 5: Memory-based computation of Haar-like feature extraction

of a stripe can be calculated by (sA+sD)− (sB +sC), where
A,B,C and D are the top-left, top-right, bottom-left, and
bottom-right coordinate, respectively. The procedure computes
the pixel sums of the other stripes as well to determine a feature
value.

ORCHARD exploits the integral image to compute the Haar-
like features. As shown in Figure 5, the Haar-like feature
extractor memory has a similar structure to the HOG extractor,
and the crossbar recipe memory stores the integral image
computed from the microcontroller. In our design, we optimize
the pixel sum computation by utilizing a PIM-based addition
design presented in [29]. This design performs the addition op-
eration of two activated rows inside memory in a single cycle
without using CMOS logics. Thus, we can compute a Haar-
like feature from the two in-memory additions, i.e., (sA+sD)
and (sB + sC), while the addresses are decoded from the
pixel coordinates. The subsequent subtraction and weighting
are processed by a small CMOS-based weighted subtractor
block which implements the subtraction and weighting logic
using shift operations.

Unlike the HOG extractor, this memory block has to be
initialized with the integral image, creating additional write
operations. Since the two feature extractor memories have
these different characteristics, we design each memory with
different optimization goals. The next section describes how
the crossbar memory blocks are designed by the strategy.

3) Crossbar Memory Optimization: The crossbar memory
blocks used in the proposed in-memory HOG and Haar-like
feature extractors have different memory access characteristics.
Thus, on the top of the benefit came from the memory-based
computing, there is a potential room for efficiency improve-
ment by further optimization. For example, the HOG extractor
block can be optimized for the read latency by configuring
design knobs, e.g., buffer, sense amplifier design, etc. [30],
since the recipe memory can be stored once offline. In contrast,
the Haar-like extractor block is optimized for the write latency
to efficiently serve the runtime initialization of the integral
image. Our evaluation shows that these optimizations can
further improve the characteristics of these two memories. For
example, for the HOG extractor memory block with 1 MByte
memory, the energy and delay of a read operation are improved
by 1.8× and 2.9× respectively. Similarly, we can optimize the
energy and latency of write operations of the Haar-like feature
memory by 4.6× and 2.4×.

C. Memory-Based Boosting Decision

The boosting algorithm generates a classification rule by
combining many relatively simple learners, called weak or
base learners. Each base learner is trained to cover less-
accurate hypothesis of other base learners, and creates K

probability values for each class, where K is the number of
classes. The final strong prediction is made by adding the
probability values of all base learners, and usually outperforms
a single learner-based approach. The sufficient number of base
learners, L, depends on applications. For example, for the face
recognition, more than 2000 base learners are used [7]. The
base learner can be any learning algorithm. Since the most
popular choice for the object recognition problems is a decision
tree (DT), we design a memory block capable of the decision
tree processing, called DT-MEM, as the key building block
of the boosting algorithm. In the following subsections, we
first explain the classification procedure with the DT-MEM
structure (Section III-C1), and then describe a new CAM
hardware design, called SVCAM, which identifies the most
similar values for multiple memory rows (Section III-C2).

1) Boost Learner Using In-Memory Decision Tree: Fi-
gure 6a illustrates an example of a decision tree. This decision
tree has multi-level decisions using two decision stumps,
i.e., the two decision nodes of the tree. For each decision
stump, different features of a F -dimension data point, v, are
considered, i.e., va and vb for 0 ≤ a < F and 0 ≤ b < F .
The leaf node includes the probabilities of each class, p. In
this example, K is 2.

In the ORCHARD design, a DT-MEM implements a deci-
sion tree based on the concept of auto-associative memory
which repeatedly activates a row using internal memory data.
Figure 6b shows the structure of the DT-MEM that does the
prediction of the example decision tree inside the memory.
The DT-MEM has four memory components, feature, value,
node type, and data. The value memory component exploits
the SVCAM structure, which supports an in-memory search
functionality, and others are designed as normal memory
blocks. Each component except the feature one has 2Dmax
memory rows for each edge, while the feature part has Dmax
rows, a design parameter that determines the maximum number
of decision stumps. There is another parameter, Kmax, which
is the maximum number of classes supported by ORCHARD.

Each row of the feature part corresponds to one decision
stump, and its connected two rows of other parts include
information about the two children nodes of the decision
stump. For the decision tree shown in Figure 6a, to represent
the decision stump of the root node, i.e., va > α, the 0-th row
of the feature part stores the feature index (32-bit integer),
i.e., a, and the connected two rows of the value part are set
by α and α + ε (32-bit floating point values), respectively. ε
is a 32-bit number whose all elements are 0’s except the last
bit of 1. The 1-th row of the value part and its connected row
pair have the information about the decision stump of vb > β
in the same way.

The data part stores either i) a row index (32-bit integer) if
the child is another decision stump or ii) probability values p
(32-bit floating point array) if the child is a leaf node. The child
type, i.e., decision stump or leaf, is indicated by the 1-bit flag
stored in the node type part. For example, since the left child
of the root node is another decision stump, the node type flag
is set to 1, and the first of 32 bits of the data part store the row
index of the child decision stump, i.e., 1. In contrast, for the
right child, which is a leaf node with the probability values,
the node type flag is set by 0 and the data part stores p.

Based on this structure, the DT-MEM performs the in-
memory decision task by following iterative steps. (i) It first
starts by activating one row. During the initial run, the first row
is activated for the decision stump of the root node. Then, a
feature vt is selected based on the index t of the feature part,
and placed into the CAM buffer. At the same time, the two
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Fig. 6: A decision tree example and equivalent DT-MEM structure

rows connected to the value part are enabled. (ii) In the next
cycle, the value part performs the SVCAM-based similarity
search for the two enabled rows, e.g., α and α + ε; that is,
the first row (dotted arrow) is selected if the value is smaller
or equal than α. Otherwise, the second row (solid-line arrow)
is selected. Thus, for the node type and data part, only one
row is activated. (iii) Once the one row is activated, its node
type bit determines whether it proceeds the further search. In
this example, if va ≤ α, the activated flag is 1, meaning that
it needs to test another decision stump. The row index of the
next decision stump is stored in the first 32-bits of the data
component. The row driver decodes the row index and process
the decision stump by going back to the step (i).

By processing the iterations until the node type flag
is 0, we can identify probability values as the result of the
DT-MEM. All these computations happen inside the memory
without external accesses to the stored data for the decision
tree model. This reduces the data movement overhead, thus
significantly improving performance of the whole prediction
procedure which many base learners involve.

Tree-based Adder Once each DT-MEM identifies the decision
probabilities in parallel, ORCHARD adds the probabilities of
all DT trees to create the final prediction as discussed in
Section III-A. We employ multiple adders in a tree structure to
parallelize the addition. In our implementation, the tree-based
adder can add 128 floating points numbers. When the number
of DT-MEMs is larger than 128, it serially computes the sum
of probabilities for each class by grouping DT-MEMs.

Cascade Decision Some object recognition models may use
Cascading classifier algorithm, a variant of boosting algorithm,
mostly with the Haar-like features. The cascading classifier
also includes many base learners, but the decision is made
through multiple stages in which a group of base learners is
involved. For example, where there are L base learners, i.e.,
DT-MEM1, · · · , DT-MEML in our design, an i-th stage has li
base learners and

∑
li = L . In the cascading procedure, the

decision trees of the first stage perform the initial classification.
Then, by comparing the classification result with a trained
threshold, it decides whether it proceeds to the next stages or
not. This multi-stage decision is repeated until the last stage.
ORCHARD design also supports the cascading decision. After
executing all the DT-MEMs of the model, we activate the
tree-based adder for the results of the first stage, DT-MEM1.
This procedure is repeated in the same way as in the original
cascade classification model to get the final prediction.

2) SVCAM design: As explained in the previous section,
the SVCAM performs the comparison operation of the DT-
MEM based on similarity search. Figure 7 shows an illustration
of the 4-bit SVCAM as an example. The CAM cells are

I M
L

Fig. 7: 4-bit SVCAM structure

designed using the resistive memory, and connected each other
to two types of lines, horizontal match lines (ML) and vertical
bit lines (BL). A single cell stores one bit, and a row of 4
cells represents one 4-bit numeric value, which is accessible
via BL using the MEM sense amplifier. The CAM functionality
is performed with three logic components: input buffer, row
driver, CAM sense amplifier. The input buffer stores an 4-
bit value to be searched. The row driver selects two rows
which are compared with the reference value. The CAM sense
amplifier is used to recognize the row which has the closer
value.

The CAM sense amplifier exploits analog characteristics of
memristor devices to enable the search capability. The search
operation starts with precharging all MLs to Vdd, while the
buffer strengthens the bit signals of the reference value to make
sure that all CAM rows can receive them at the same time.
Then, each CAM cell, whose stored bit is mismatched to the
reference value bit, discharges current of the corresponding
ML. The discharging speed of an ML depends on the amount
of current that the mismatches create. For example, if all CAM
cells create the same current when mismatched, the row with
the minimum bit difference discharges last. By keeping track
of all MLs, we may find the row that discharged last, but
this requires a complicated sense amplifier circuit such as
high precision detectors and counters. To design a light-weight
sense circuitry, we exploit an alternative CAM design proposed
in [31], which stores the values in the inverse mode. Using this
CAM design, when the input data is matched with the stored
CAM value, it discharges the ML, while the ML stays charging
when there is a mismatch. This simplifies our sense circuit
design. We can find the nearest row by identifying the row
that discharged first. Figure 7 also shows our sense amplifier
design. The design consists of three main blocks: (i) a detector
circuit which samples the voltage of all MLs to find the first
discharged row, (ii) a buffer which delays the ML voltage to
the output node, and (iii) a latch block which keeps the buffer
output when the detector circuit is signaled.

With the sense circuitry, the SVCAM design implements
the similarity search function by considering the impact of
each bit index on the value comparison. In our design, each
cell has different memristor sizes according to its bit index,
so that they create different amount of discharging current,
i.e., 8I , 4I , 2I , and 1I as denoted in the figure. For example,
voltage of the 15I case, i.e., all 4-bit matches, drops much
more quickly than in the 1I case. To support 32 bit floating-
point number, we exploit two of the 4-bit SVCAM blocks for
the exponent and six for the mantissa by connecting the latch
and the row driver of adjacent blocks. Then, by activating each
block serially, we find the final row which has the closest value
to the reference.
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TABLE I: Experimented recognition models (DS: decision stump)

Name Feature # of Classifier # of
features DTs

MNIST HOG 392 Boost with 6-level DTs 1024
Face HOG 608 Boost with 6-level DTs 2048
Pedstrain Haar 1464 Cascade (30 stages, DS) 1464
Vechile Haar 250 Cascade (13 stages, DS) 250

Fig. 8: Image recognition quality for four models

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the proposed ORCHARD design by using
circuit- and device-level simulations. For the circuit-level
simulation, we use HSPICE simulator in 45 nm technology.
The memristor devices are designed with a large OFF/ON
resistance ratio to provide stable and large sense margin [32].
The microcontoller is designed using System Verilog and
Synopsys Design compiler in 45nm TSMC technology. All
designed circuits have been verified by considering 10%
process variations on the transistors with 5000 Monte Carlo
simulations. We have also cross-validated the computed energy
consumption and performance of the crossbar memory blocks
using NVSIM [30]. Since the circuit-level simulation does
not produce the recognition results in a reasonable execution
time for practical datasets which include a large number of
images, we also implemented a cycle-accurate device-level
simulator, which performs the functionalities of the designed
memory blocks in the software, using C++. To compare the
energy and performance efficiency to existing processor-based
implementations, we also measured the power consumption
of Intel Xeon E5440 processor of Intel SR1560SF server and
ARM Cortex A53 processor of Raspberry Pi3 using HIOKI
3334 power meter for each instrumented platform running
software recognition procedures.

To verify recognition quality of ORCHARD for practical
image recognition problems, we consider four problems: text,
face, pedestrian, and vehicle recognition. Table I summarizes
the recognition models for each recognition problem.

MNIST MNIST [27] is a canonical dataset which includes
hand-written digit images. To train the model with the pro-
posed approximate HOG features, we modify scikit-learn ma-
chine learning library [33] and create models with the training

Fig. 9: Accuracy changes for different HOG approximation levels

dataset using SAMME.R Adaboost algorithm [34] and 6-level
decision trees as base learners. The HOG features are extracted
by dividing original 28x28 pixels into 7x7 regions.

Face We exploit Caltech 10000 web faces dataset [28], and
train the model in a similar way to MNIST. Negative training
images, i.e., non-face images, are selected from Cifar-100 [35]
and Pascal VOS 2012 datasets [36]. We select 10% of images
for the testing dataset which are completely separated from the
training dataset. For the HOG feature extraction, we divide a
32x32 image to i) 2x2 regions for three color channels and ii)
8x8 regions for grayscale.

Pedestrian We exploit the human body recognition model
available in OpenCV library [37]. The model is built based
on the Haar-like features and cascade classifier. To verify the
recognition quality, we use INRIA image datasets [5].

Vehicle We exploit an OpenCV vehicle recognition model
published in [38], which uses Haar-like features and cascade
classifier. The recognition quality is verified with UIUC car
detection dataset [39].

The models specified with either sklearn or OpenCV XML
files are interpreted and stored into the memory blocks of the
ORCHARD simulation environment.

B. Object Recognition Accuracy

We first present how ORCHARD recognizes visual objects in
practical images. Figure 8 shows the object recognition results
for four images. We loaded each model into the ORCHARD
device-level simulator, and applied each image using the slid-
ing window approach which generates multiple tested regions
across an image. For the MNIST and Face models, the
quantization level Q of the HOG approximation is set to 6.
As shown in the results, ORCHARD successfully recognizes
the target objects. For example, using the Face model which
exploits the approximate feature extraction procedure, we can
detect all faces.

We have also quantified detection quality of each model
with its testing dataset described in IV-A. The testing dataset
includes images which are not used for the model training.
Figure 9a and 9b show the prediction accuracy changes of
MNIST and Face respectively, for different numbers of base
learners (L) and quantization levels (Q), where the accuracy
is defined by the percentage of images whose object classes
are correctly predicted. The results show that by selecting
the sufficient number of base learners and quantization levels,
we can achieve the same level of recognition quality as
compared to the precise feature computation (denoted Exact
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Fig. 10: Energy and performance improvement of MNIST and Face

in the figure). For example, for MNIST, there is only 0.4%
accuracy loss with the most aggressive quantization level, i.e.,
Q = 2 and L = 1024, resulting in 97.5% of accuracy.
Face model is more sensitive to the quantization level, but
ORCHARD can recognize images 96.7% of the time which
incurs only 0.3% error when Q = 6 and L = 2048. For
the Haar-like feature-based cascade models, i.e., Pedestrian
and Vehicle, ORCHARD precisely performs the recognition
procedure without any approximation. For these two models,
the recognition precision is 91.0% and 93.8%, respectively.

To better understand the impact of the quantization level
on the recognition quality, we compute window probability
for each pixel, which is the normalized sum of the predicted
probabilities for all sliding windows that include the pixel.
Figure 9c illustrates four images of the window probability for
different Q values, using the same image shown in Figure 8b.
The results show that the recognition quality increases with
higher quantization level. For example, for both the Q = 6
and Q = 8 cases, ORCHARD can accurately recognize faces,
whereas the Q = 2 case is likely to create more false positives.
Quantization level affects area overhead of ORCHARD design
and its efficiency. For example, the required size of the crossbar
memory used for HOG extractor is around 45 MBytes and 600
MBytes for Q = 6 and Q = 8 cases, respectively. We present
more details about ORCHARD’s system efficiency for different
quantization levels in the next section.

C. Energy and Performance Improvement

We evaluate energy and performance efficiency of
ORCHARD accelerator by comparing with the existing
processor-based object recognition procedure. We consider
two processors Intel Xeon E5440 and ARM Cortex A53,
which could be used in a cloud server and an embedded
device platform, respectively. Figure 10 shows the energy
and performance improvement of MNIST and Face running
on the proposed ORCHARD accelerator as compared to the
two processor-based implementations. For the two models
which use the approximate HOG feature extractor, the quan-
tization level affects the power and performance efficiency
of ORCHARD since it uses less memory area. When using
Q = 6, which has 0.3% of accuracy loss for MNIST workload,
ORCHARD achieves energy efficiency improvements of 1896x
relative to the server with 376x speedup, and 552x as compared
to ARM Cortex A53 with 2654x speedup. The energy and
latency of ORCHARD for this workload are 29 μJ and 2.0
μs. These results show that the proposed ORCHARD which
executes all the tasks inside memory is very effective in terms
of the processing efficiency for the object recognition.

The comparison results of the Haar-like feature-based
cascade models, used for Pedestrian and Vehicle workloads,
are summarized in Figure 11. These cascade models have
lower efficiency improvement than the acceleration of the

Fig. 11: Energy and performance improvements of Pedestrian and
Vehicle

Fig. 12: Energy and latency breakdown

HOG-based boosting models. There are three main reasons
for this: (i) the cascade algorithm terminates the classification
procedure when inaccurate prediction results are observed in a
certain stage, thus finishing faster, (ii) the decision tree has only
one-level node, and (iii) ORCHARD accelerator has to compute
and write the integral image to its extractor memory. However,
even given this, the improvements relative to processor-based
implementations on server (embedded device) are significant,
e.g., 1352x (132x) energy improvement and 37x (98x) speedup
for the Pedestrian workload.

To understand the energy and performance efficiency of
ORCHARD accelerator, we further separated the energy and
latency of the prediction procedure into three components: the
feature extractor, DT-MEM blocks, and tree-based adder in the
boost learner. Figure 12 shows the breakdown of energy and
latency for the four models when Q = 6. The results show
that a relatively large portion of energy and execution time
is consumed by the crossbar memory in the feature extractor,
since it requires many memory operations. Haar-like feature
extractor consumes 93% power to write the integral image
during the initialization stage. In contrast, the latency of write
operations take less portion (63% of time) than energy in
this memory block, since we optimize the crossbar memory
for the write latency. This presents that the memory block
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Fig. 13: Area overhead analysis

optimization discussed in III-B3 also contributes the overall
improvement of the performance efficiency. Once the features
are extracted, DT-MEMs can perform classification in parallel,
taking on average only 4% of the energy and 0.2% of the total
latency for the four recognition models.

D. Area Overhead

We also estimate the area overhead of ORCHARD. Here,
ORCHARD is designed so that it can support all four models
with Q = 6. Figure 13 shows that the crossbar memory
blocks of the two feature extractors and all the DT-MEM
blocks take 63.7% and 31.9% of the total area, respectively.
The rest, totaling 4.4% area, corresponds to other CMOS-
based circuitry, including the tree-based adder, microcontroller,
adder/subtractor of the feature extractor, and MUX. This
analysis shows that the proposed ORCHARD can be designed
with minimal CMOS logic which typically consumes a lot of
energy in the existing processors.

V. CONCLUSION AND DISCUSSION

In this paper, we propose ORCHARD, which accelerates
the object recognition task by using approximate in-memory
processing. The proposed design accelerates the two key
procedures of the recognition task: the feature extraction and
boosting-based classification algorithm. We use approximation
techniques for HOG feature extraction and optimize for the
different memory access characteristics of the two feature
extractor modules. Since all main computation of the classifi-
cation and recognition tasks is done inside memristor blocks
that consume less energy and run faster, we can improve the
efficiency significantly. In our evaluation conducted with four
practical image recognition tasks, we show that ORCHARD
accelerator accurately detects the target object, while achieving
energy efficiency improvement of up to 1896x and 376x
speedup as compared to the server-based implementation with
only 0.3% accuracy loss. Our current ORCHARD design can
be generalized as a solution for diverse classification prob-
lems, which also exploits ensemble of decision trees, since it
can accelerate any decision tree. In addition, the in-memory
similarity search could be used as a basic operation to further
accelerate of the model training procedure as well.
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